(Nanowerk) MIT researchers have fabricated a diamond-based quantum sensor on a silicon chip. The advance could pave the way toward low-cost, scalable hardware for quantum computing, sensing, and communication.
“Nitrogen-vacancy (NV) centers” in diamonds are defects with electrons that can be manipulated by light and microwaves. In response, they emit colored photons that carry quantum information about surrounding magnetic and electric fields, which can be used for biosensing, neuroimaging, object detection, and other sensing applications. But traditional NV-based quantum sensors are about the size of a kitchen table, with expensive, discrete components that limit practicality and scalability.
Ron Walsworth, a senior lecturer at Harvard University whose group develops high-resolution magnetometry tools using NV centers explained the significance, “They have taken a key step in the integration of quantum-diamond sensors with CMOS technology, including on-chip microwave generation and delivery, as well as on-chip filtering and detection of the information-carrying fluorescent light from the quantum defects in diamond. The resulting unit is compact and relatively low-power. Next steps will be to further enhance the sensitivity and bandwidth of the quantum diamond sensor [and] integrate the CMOS-diamond sensor with wide-ranging applications, including chemical analysis, NMR spectroscopy, and materials characterization.”

0