(IEEESpectrum) An Intel team has created an improved version of such a quantum-resistant cryptographic algorithm that could work more efficiently on the smart home and industrial devices making up the Internet of Things.
The Bit-flipping Key Encapsulation (BIKE) provides a way to create a shared secret that encrypts sensitive information exchanged between two devices. The encryption process requires computationally complex operations involving mathematical problems that could strain the hardware of many Internet of Things (IoT) devices. But Intel researchers figured out how to create a hardware accelerator that enables the BIKE software to run efficiently on less powerful hardware.
BIKE securely establishes a shared secret between two devices through a three-step process, says Santosh Ghosh, a research scientist at Intel and coauthor on the paper. First, the host device creates a public-private key pair and sends the public key to the client. Second, the client sends an encrypted message using the public key to the host. And third, the host decodes the encrypted message through a BIKE decode procedure using the private key. “Of these three steps, BIKE decode is the most compute intensive operation,” Ghosh explains.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.