(Phys.org) Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms. In this technique, the control laser light is delivered directly inside a chip. This should make it possible to build large-scale quantum computers based on trapped atoms.
At ETH in Zurich, Jonathan Home and his co-workers at the Institute for Quantum Electronics have now demonstrated a new method that allows them to deliver multiple laser beams precisely to the right locations from within a chip in such a stable manner that even the most delicate quantum operations on the atoms can be carried out.
“Already in current small-scale systems, conventional optics are a significant source of noise and errors—and that gets much harder to manage when trying to scale up”, Mehta explains. The more qubits one adds, the more complex the optics for the laser beams becomes which is needed for controlling the qubits. “This is where our approach comes in”, adds Chi Zhang, a Ph.D. student in Home’s group: “By integrating tiny waveguides into the chips that contain the electrodes for trapping the ions, we can send the light directly to those ions. In this way, vibrations of the cryostat or other parts of the apparatus produce far less disturbance.”

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.