(Economist) Quantum computing offers a worked example of how complicated technologies develop in industrial societies. The chief lesson is to attend to every part of the process. The frenzy of innovation around classical computing, concentrated in Silicon Valley, has focused attention on the world of startups, venture capital and ipos. But these are things that happen late in a technology’s development. As Mariana Mazzucato, an Italian-American economist, has argued, the biggest risks are taken earlier, when it is unclear whether a technology will work at all.
The state can be one such risk-taker. The first step in building a quantum computer was to conduct plenty of abstruse mathematics on university blackboards. Collectively, governments, including those of America, Britain, China and Germany, have thrown billions of dollars at funding quantum research.
The trick for such super-early-stage investors is to know when to stick with a risky prospect and when to call it quits. Good venture capitalists are ruthless about culling underperforming bets and focusing on those that seem to be paying off. Their proximity to markets makes such judgments easier. But governments—which are, after all, spending public money—should strive for the same outlook.
The popular image of innovation as a “pipeline”, with a stream of individual technologies proceeding smoothly from ideas to products, is likewise too neat. Progress in quantum computing depends on progress in dozens of other fields, from lasers to cryogenics.

0