(InterestingEngineering) Some of the most important work in the quantum computing field has been creating algorithms that simulate different quantum systems that pop-up in everything from laser technology to medicine. These algorithms are going to be able to outperform similar classical computing simulations by a wide margin. Currently, classical algorithms that perform molecular simulation are limited in the kinds of molecules that it can simulate.
There are quantum algorithms for everything from depth-first searches and quantum walks over a graph to solving systems of linear equations, differential equations, and even making progress on certain classes of optimisation problems, such as adiabatic optimisation. What these algorithms lack, however, is a sufficiently powerful quantum computer with enough qubits to run.
That won’t be the case forever, though, and when the time comes to take these algorithms off the shelf and put them to work, some of the most frustratingly intractable, exponentially- and factorially-complex problems in business, administration, medicine, engineering, and more will be resolved in superpolynomial time or faster. These gains are the real deal and they’re gauranteed by their logic to work; the only question is just how long it will take for these computers to arrive.

0