By IQT News posted 18 Jul 2019

(AZoQuantum) Researchers at the Skolkovo Institute of Science and Technology, Moscow, have discovered a limit on the ability of quantum computing algorithms to solve certain kinds of problems. In a paper entitled “Reachability Deficits in Quantum Approximate Optimization”, V. Akshay, H. Philathong, M.E.S. Morales, and J.D. Biamonte study the ability of the Quantum Approximate Optimization Algorithm (QAOA) to solve constraint satisfaction problems. In these problems, values of boolean variables must be found that satisfy several logical constraints.
QAOA is important because it is implementable with current quantum computing hardware and can be applied to a variety of different problems. However, previous work has shown that it does not outperform classical methods for small circuit depths, and the work of Askay et al. shows that large circuit depths are necessary to ensure that the correct solution is reached. While quantum computing has the potential to solve hard problems faster than classical computing, it is necessary to thoroughly understand the limitations of the algorithms to ensure they give correct answers in practice.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

  • Forthcoming Events

    • IQT Fall | November 1-5, 2021
      Online & In-Person New York City
    • IQT, The Hague, The Netherlands | February 21-23, 2022
    • IQT Spring | May 10-13, 2022
      Online & In-Person San Diego
    • IQT Asia-Pacific Singapore 2022 | Dates Forthcoming
    • For additional information: