By IQT News posted 26 Oct 2021

(Phys.org) Consumers need to be confident that transactions they make online are safe and secure. A main method to protect customer transactions and other information is through encryption.
But even that may have a weakness: Encrypted information could be decoded by future quantum computers that would try many keys simultaneously and rapidly find the right one.
To prepare for this future possibility, researchers are working to develop codes that cannot be broken by quantum computers. These codes rely on distributing single photons—single particles of light—that share a quantum character solely among the parties that wish to communicate. The new quantum codes require these photons to have the same color, so they are impossible to distinguish from each other, and the resulting devices, networks, and systems form the backbone of a future “quantum internet.”
Researchers at the University of Iowa have been studying the properties of photons emitted from solids and are now able to predict how sharp the color of each emitted photon can be. In a new study, the researchers describe theoretically how many of these indistinguishable photons can be sent simultaneously down a fiber-optical cable to establish secure communications, and how rapidly these quantum codes can send information.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

0