888-384-7144 info@insidequantumtechnology.com

Light-Trapping, Color-Converting Crystal Step Toward Faster Telecommunications & Quantum Computers

By IQT News posted 08 Aug 2019

(ScienceDaily) Stanford University’s procedure for creating a microscopic crystal structure that can hold two wavelengths of light at once is a step toward faster telecommunications and quantum computers.
At the heartnonlinear optics are devices that change light from one color to another — a process important for many technologies within telecommunications, computing and laser-based equipment and science. But Stanford post-doc Minkov wanted a device that also traps both colors of light, a complex feat that could vastly improve the efficiency of this light-changing process — and he wanted it to be microscopic.
In order to prove the near-impossible was still possible, Minkov and Shanhui Fan, professor of electrical engineering at Stanford, developed guidelines for creating a crystal structure with an unconventional two-part form. The details of their solution were recently published.
If telecommunications channels were a highway, flipping between different wavelengths of light would equal a quick lane change to avoid a slowdown — and one structure that holds multiple channels means a faster flip. Nonlinear optics is also important for quantum computers because calculations in these computers rely on the creation of entangled particles.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

IQT Partner Program

Quantropi
DUSA
McAndrews
HKA
Aliro
RANDAEMON
Zapata
Quantum Xchange
Toshiba
Quintessence Labs
Keysight World
Post Quantum
Qunnect

Become an IQT partner

0