IBM Quantum’s Open Science Prize returns with a quantum simulation challenge

By IQT News posted 30 Nov 2021

(IBM.ResearchBlog) IBM Quantum is excited to announce the second annual Open Science Prize — an award for those who can present an open source solution to some of the most pressing problems in the field of quantum computing. Submissions are open now, and must be received by April 16, 2022.
This year, the challenge will feature one problem from the field of quantum simulation, solvable through one of two approaches. The best open source solution to each approach will receive a $40,000 prize, and the winner overall will receive another $20,000.
Participants can team up into groups of up to five, and can choose to solve the problem in one of two ways:
Either use Qiskit Pulse, that is, the Qiskit module that allows users pulse-level control over quantum quantum gates,
Or try to solve the problem using Qiskit defaults.

Simulating physical systems on quantum computers is a promising application of near-term quantum processors. This year’s problem asks participants to simulate a Heisenberg model Hamiltonian for a three-particle system on IBM Quantum’s 7-qubit Jakarta system. The goal is to simulate the evolution of a known quantum state with the best fidelity as possible using Trotterization.

Researchers use the Heisenberg model to study a variety of physical systems involving interacting particles with spins. Quantum computers are useful tools to simulate these models because you can represent the spin states of particles as the computational states of qubits.

IBM encourages each team to push outside of their members’ comfort zone and try whichever method they think is best suited to solve the problem. Although Qiskit Pulse offers more detailed control of the qubits, there are advantages and disadvantages to both approaches.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

IQT Partner Program

Quantropi
DUSA
McAndrews
0