888-384-7144 info@insidequantumtechnology.com

Foundational Step Shows Quantum Computers Can Be Better than the Sum of Their Parts

By IQT News posted 05 Oct 2021

(Phys.org) JQI Fellow Christopher Monroe’s group, together with colleagues from Duke University, have made progress toward ensuring we can trust the results of quantum computers even when they are built from pieces that sometimes fail. They have shown in an experiment, for the first time, that an assembly of quantum computing pieces can be better than the worst parts used to make it. In a paper published in the journal Nature on Oct. 4, 2021, the team shared how they took this landmark step toward reliable, practical quantum computers.
In their experiment, the researchers combined several qubits—the quantum version of bits—so that they functioned together as a single unit called a logical qubit. They created the logical qubit based on a quantum error correction code so that, unlike for the individual physical qubits, errors can be easily detected and corrected, and they made it to be fault-tolerant—capable of containing errors to minimize their negative effects.
This is the first time that a logical qubit has been shown to be more reliable than the most error-prone step required to make it. The team was able to successfully put the logical qubit into its starting state and measure it 99.4% of the time, despite relying on six quantum operations that are individually expected to work only about 98.9% of the time.
That might not sound like a big difference, but it’s a crucial step in the quest to build much larger quantum computers.
The results were achieved using Monroe’s ion-trap system at UMD, which uses up to 32 individual charged atoms—ions—that are cooled with lasers and suspended over electrodes on a chip. They then use each ion as a qubit by manipulating it with lasers.
Fault-tolerant logical qubits are a way to circumvent the errors in modern qubits and could be the foundation of quantum computers that are both reliable and large enough for practical uses.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

0