Diamond quantum sensor detects ‘magnetic flow’ excited by heat

By IQT News posted 03 Feb 2022

(Phys.org) Nitrogen-vacancy (N-V) centers in diamond, basically a point defect consisting of a nitrogen atom paired with an adjacent lattice vacancy, has emerged as a key for high-resolution quantum sensors. Interestingly, recently, it has been demonstrated that N-V centers can detect coherent magnon. However, detecting the thermally excited magnons by heat using N-V centers is difficult since the thermal magnons have much higher energy than the spin state of N-V centers, limiting their interaction.
Now in a collaborative study published in Physical Review Applied, Associate Professor Toshu An from Japan Advanced Institute of Science and Technology (JAIST) and Dwi Prananto, a Ph.D. graduate from JAIST, along with researchers from Kyoto University, Japan, and the National Institute for Materials Science, Japan, have successfully detected these energetic magnons in yttrium iron garnet (YIG), a magnetic insulator, by using a quantum sensor based on diamond with NV center
To achieve this feat, the team used the interaction between coherent, low-energy magnons and N-V centers as an indirect way to detect the thermally excited magnons. As it turns out, the current produced by thermal magnons modifies the low-energy magnons by exerting a torque on them, which can be picked up by the N-V centers. Therefore, the method provides a way to detect thermal magnons by observing the changes in the coherent magnons.
These findings could not only open up new possibilities in quantum sensing but also pave the way for its integration with spin caloritronics. “Our work could lay the foundation for spintronic devices controlled by heat sources,” says Dr. An.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

  • Forthcoming Events

    • IQT Fall (Quantum Cybersecurity)
      October 25-27, 2022
      New York City | In-Person
      (website forthcoming)
    • IQT The Hague (Quantum Communications)
      February 21-23, 2023
      The Hague | In-Person
      (website forthcoming)
    • IQT Spring (Quantum Enterprise)
      April 18-20, 2023
      San Jose | In-Person
      (website forthcoming)
    • Sponsorship / Speaking:
      info@3drholdings.com
0