(Photonics) Researchers from the Moscow Institute of Physics and Technology (MIPT), joined by a colleague from Argonne National Laboratory, have implemented an advanced quantum algorithm for measuring physical quantities using simple optical tools. The technology could allow for affordable linear optical sensors with high-performance characteristics, with applications in diverse research fields such as astronomy and biology.
“We devised and constructed an optical scheme that runs the Fourier transform-based phase estimation procedure,” said study co-author Nikita Kirsanov from MIPT. “This procedure lies at the core of many quantum algorithms, including high-precision measurement protocols.”
A specific arrangement of a very large number of linear optical elements — beam splitters, phase shifters, and mirrors — makes it possible to gain information about the geometric angles, positions, velocities, and other parameters of physical objects. The measurement involves encoding the quantity of interest in the optical phases, which are then determined directly.
The study has demonstrated that linear optics offers an affordable and effective platform for implementing moderate-scale quantum measurements and computations,” Argonne Distinguished Fellow Valerii Vinokur said.