(ScientificAmerican) Recently, IBM successfully demonstrated a quantum-proof encryption method it developed.
“There are a lot of problems that cryptography is based on right now that, actually, we don’t think can be solved by normal computers,” says Vadim Lyubashevsky, a quantum-safe cryptography researcher at IBM Research–Zurich. But many of these encryption algorithms were originally developed decades ago, before researchers had developed quantum algorithms that could outperform classical ones. “As it so happens, [quantum computers] can solve the sort of these cryptographic problems upon which we built our cryptography in the 1980s exponentially faster than classical computers,” Lyubashevsky says.
Organizations such as NIST are trying to narrow down the potential options in order to develop a standardized method for quantum-proof encryption. In 2016 NIST put out a call for potential postquantum algorithms, and earlier this year it announced it had winnowed 69 accepted submissions down to 26 leading candidates.
IBM is not waiting for the results of this competition, however. In August the company announced its researchers had used its NIST submission, a system dubbed CRYSTALS (short for Cryptographic Suite for Algebraic Lattices) to successfully encrypt a magnetic-tape storage drive.
CRYSTALS generates its public and private keys with a category of equations called “lattice problems.”
IBM submitted CRYSTALS to the NIST contest in 2017. This summer, IBM announced it had used the method in a practical application by encrypting the data on a prototype storage drive. Although NIST may not ultimately select CRYSTALS as its new standardized cryptography technique, IBM still hopes to use the system for its own products. Its summer announcement, presented at the Second PQC Standardization Conference at the University of California, Santa Barbara, also included the news of a CRYSTALS modification that should let it encrypt cloud-based data. IBM hopes to use this improvement to render the IBM Cloud quantum-proof by 2020.

0