(SciTechDaily) Silicon carbide is in the race to become the leading material for developing an expanding system of quantum networks, according to an international team of scientists from the University of Chicago.
“What started out as a basic scientific enterprise by our group a number of years ago has developed into an exciting opportunity to engineer new quantum systems,” said David Awschalom, Liew Family Professor of Molecular Engineering at the Pritzker School of Molecular Engineering (PME), senior scientist at Argonne National Laboratory and director of the Chicago Quantum Exchange. “This particular system is already a successful commercial electronics technology; industry is well-prepared to manufacture devices.”
Awschalom and colleagues from UChicago, the University of Stuttgart, in Germany, and Linköping University, in Sweden, summarized the relative advantages that various quantum spintronics systems offer for developing new technologies. The paper coincides with an increasing industrial interest in using various types of quantum states to build prototype technologies for new types of sensing, communication, and computing.
“It’s exciting to think about working with foundries and commercial partners to move these technologies out of the lab and into the real world, using the same techniques that make your smartphone’s processor,” said UChicago postdoctoral scholar Chris Anderson, a co-author on the article.

0