Researchers Simulate Quantum Computer with Up to 61 Quantum Bits
(Phys.org) Researchers at the University of Chicago and Argonne National Laboratory significantly used data compression techniques to fit a 61-qubit simulation of Grover’s quantum search algorithm on a large supercomputer with 0.4 percent error. Other quantum algorithms were also simulated with substantially more qubits and quantum gates than previous efforts.
Classical simulation of quantum circuits is crucial for better understanding the operations and behaviors of quantum computation. When trying to debug quantum hardware and software with a quantum simulator, every quantum bit (qubit) counts. Every simulated qubit closer to physical machine sizes halves the gap in computing power between the simulation and the physical hardware. However, the memory requirement of full-state simulation grows exponentially with the number of simulated qubits, and this limits the size of simulations that can be run.