By IQT News posted 05 Aug 2019

(Photonics) Scientists from Osaka University have demonstrated how information encoded in the circular polarization of a laser beam can be translated into the spin state of an electron in a quantum dot (QD). They used laser light to send quantum information to a QD by altering the spin state of a single electron trapped on the QD.
The work of the Osaka team could be a step toward realizing hacker-proof, interconnected quantum computers. “The transfer of superposition states or entangled states allows for completely secure quantum key distribution,” professor Akira Oiwa said. “This is because any attempt to intercept the signal automatically destroys the superposition, making it impossible to listen in without being detected.”

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

  • Forthcoming Events

    • IQT Fall | November 1-5, 2021
      Online & In-Person New York City
    • IQT, The Hague, The Netherlands | February 21-23, 2022
    • IQT Spring | May 10-12, 2022
      Online & In-Person San Diego
    • IQT Asia-Pacific Singapore 2022 | Dates Forthcoming
    • For additional information: info@3drholdings.com
0