By IQT News posted 23 Sep 2021

(BusinessWire) IonQ, Inc. (“IonQ”) has announced the release of a new paper in collaboration with Fidelity Center for Applied Technology (FCAT) that demonstrates how its quantum computers can outperform classical computers to generate high-quality data for use in testing financial models. Financial institutions commonly use models for asset allocation, electronic trading, and pricing, and require testing data to validate the accuracy of these models. The new technique, demonstrated by FCAT on IonQ’s latest quantum computers, has the potential to be the first class of quantum machine learning models to be deployed for broad commercial use.

Today, many financial institutions generate data with classical machine learning to test their financial models. These classical approaches are often limited because real-world dependencies between variables–for example, in a portfolio of stocks–are too complex for them to model. IonQ and FCAT demonstrated that data generated with quantum machine learning algorithms is more representative of these real-world dependencies and is therefore better at accounting for edge cases like black swan events.
The technique invented by IonQ and FCAT leverages copulas, a method often used in statistical models to describe relationships between large numbers of variables. For instance, large financial institutions use copulas to understand relationships between stock prices (if the price of X is within a particular range, then the price of Y tends to go up). By using quantum computers to implement copulas, IonQ and FCAT demonstrated the ability to construct complex models beyond the capability of classical computers.
“This research, performed on IonQ hardware, shows quite clearly that leveraging quantum computing can lead to superior financial modeling results. The application of quantum machine learning to other industries, ranging from climate science to geopolitics, means that a quantum-shaped future is just around the corner,” said Peter Chapman, CEO and President of IonQ. “Fidelity has long been a leader in understanding how new technologies will shape markets and industries, and we’re excited to work with them in this space.”
The copula method underlying FCAT and IonQ’s work can be applied to any industry dealing with complex systems that involve several correlated variables. In the near future, quantum machine learning may be applied to climate research, medical imaging, or recommendation systems. In finance, the first quantum machine learning methods using copulas are likely to be applied to risk management and portfolio optimization.
“At FCAT, we track new and emerging technologies and trends to help Fidelity meet the changing needs of our customers and associates,” said Adam Schouela, Head of Emerging Technology, Fidelity Center for Applied Technology. “Classical computing enabled breakthroughs in the financial services space, and we expect quantum computing’s impact to be no less significant. We’re thrilled that our latest research with IonQ can help demonstrate quantum’s potential in this space.”

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

  • Forthcoming Events

    • IQT Fall | November 1-5, 2021
      Online & In-Person New York City
    • IQT, The Hague, The Netherlands | February 21-23, 2022
    • IQT Spring | May 10-12, 2022
      Online & In-Person San Diego
    • IQT Asia-Pacific Singapore 2022 | Dates Forthcoming
    • For additional information: info@3drholdings.com
0