888-384-7144 info@insidequantumtechnology.com

Should the Quantum Internet Be Space-Based?

By IQT News posted 20 Feb 2020

(SpaceWatch) Project Q’s Gabriella Skoff provides a comprehensive review about the challenges and opportunities of a satellite-based quantum internet. New satellite constellations are being presented as the best way forward to empower a global quantum internet. As the use-value of satellites broadens and we become ever-more dependent on the networks and systems they support, two critical threats loom large. One, the physical threat of space debris; and two, the threat posed by the increasing militarization of space. These challenges to the implementation of a space-based quantum internet have not yet surfaced in the developing debate but must be addressed as we stand on the brink of the quantum age.
New research conducted by a Louisiana State University team led by Sumeet Khatri suggests that satellite-based technology is the best way forward to build a global quantum internet. According to the researchers, a quantum-enabled satellite constellation would be the most cost-effective approach to realise the next big application in quantum communications. Khatri’s team suggests that the most effective and logistically coherent system for a space-based quantum internet would require a constellation of at least 400 satellites, circling the globe in mid-Earth orbit, at an altitude of around 3,000 kilometres.
Space itself is no sanctuary from geopolitical rivalries. The implementation of a space-based global quantum internet will present a challenge for the grey area of international space development. Quantum satellites straddle the fine line between non-militarised and militarised infrastructure.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

IQT Partner Program

Quantropi
Aliro
Quantum Xchange
Toshiba
Quintessence Labs
Post Quantum
Qunnect
Quantum Dice

Become an IQT partner

0