(TechRepublic) Multiple experts believe 2021 will see more companies looking for specific use cases for quantum computing  that can be leveraged sometime in the next decade. Jonathan Greig of TechRepublic selected two quantum computer executive and four analysts and asked them to predict the landscape of quantum computing in 2021.

Tony Uttley, President of Honeywell Quantum Solutions
“Next year is going to be when we start seeing what algorithms are going to show the most promise in this near term era. We have enough qubits, we have really high fidelities, and some capabilities to allow brilliant people to have a set of tools that they just haven’t had access to,” Uttley said. “Next year what we will see is the advancement into some areas that really start to show promise. Now you can double down instead of doing a scattershot approach. You can say, ‘This is showing really high energy, let’s put more resources and computational time against it.’ Widespread use, where it’s more integrated into the typical business process, that is probably a decade away. But it won’t be that long before we find applications for which we’re using quantum computers in the real world. That is in more the 18-24 month range.”

Bob Sutor, Vice President of IBM Quantum Strategy and Ecosystems
“I think as an objective, what we are going to see coming out of next year is that path to value creation
Sutor predicts that quantum computing performance and scale will increase rapidly and in some cases will double year to year, while corporate application and solution architects will begin planning in earnest for how quantum computing will become part of their IT use case workflows. He also said he expects more colleges and universities to offer quantum computing courses.
“Even as we get closer to systems that could deliver a quantum advantage, or even further out, if we develop fault-tolerant systems, quantum computers will be good for solving specific kinds of problems: Exponential problems like those found in chemistry and finance. Organizations and institutions need to assess the kinds of problems they’re facing now and will face in t
Sutor said that by next year, IBM’s new 127-qubit will introduce concurrent real-time classical compute capabilities that will allow for the execution of a broader family of quantum circuits and codes.

Chirag Dekate, Research VP at Gartner
Dekate said 2021 will be a pivotal year for seeing the maturation of the vendor landscape. Amazon, Azure, and other cloud service providers are aggressively ramping up their quantum capability, Dekate said, and current quantum leaders like IBM and DWave are developing in-depth roadmaps around the scale of the systems.
“Ion-Trap based quantum computing vendors are also accelerating the maturity of their stacks. Over the next year, we anticipate the continued maturation of the Quantum Computing vendor landscape. Dekate said.
Dekate also said there will be substantial growth in the number of quantum services providers, with experts connected to universities beginning to offer quantum computing services primarily designed to identify candidate problems and start the process of rearchitecting codes for a quantum era.
“In 2020 we saw advancement in four core areas. Vendors including IBM, DWave, Google, Honeywell, IonQ, Xanadu all highlighted the growing scale of their quantum offerings. We anticipate that over the next few years, these architectures will continue to ramp-up. Quantum ecosystems provided by vendors including IBM, Dave, Amazon, Microsoft, Google, Zapata, QCWare, and beyond have evolved significantly, enabling more enterprises to start devising quantum strategies.”

Roger Grimes, data-driven defense evangelist at KnowBe4
Grimes focused his predictions and insights on the cybersecurity implications of quantum computing advancement. He said 2021 will “likely see the first public acknowledgment of the quantum crypto break, where quantum computers are capable of breaking traditional public key crypto.”
There will also be more quantum devices, such as quantum random generators and quantum key distribution, that will be cheaper and appear as subcomponents in more devices like smartphones, he added.
“I predict that someone will publicly announce that they have used a quantum computer to break a traditional asymmetric key cipher. It’s been the Holy Grail since 1994 and I predict it happens next year.”

Lewie Roberts, Analyst at Lux Research
Roberts said the goal many quantum computing experts are trying to solve now revolves primarily around the intersection of software and hardware.The goal now is to not only scale the hardware but also to optimize the existing algorithms to require less powerful hardware.
“Scaling hardware is difficult because qubits are very unstable, and generally the more of them you add to a processor the harder it is to keep them in a useful state. The main competition right now lies between groups like IBM or Rigetti—who use superconducting qubits—and groups like Honeywell or IonQ—who use ion-trap based qubits,” Roberts said.

Brian Hopkins, Analyst at Forrester
“In 2021, we’ll get a better sense of when we would achieve quantum advantage in various potential use cases. I don’t think we will reach quantum advantage in 2021, and that means in 2021, we’ll go through a bit of a trough of disillusionment. I’ve been tracking quantum computers now for a decade, and there are lots of big announcements, progress, and then it slows down.”
But Hopkins explained that the manufacturing industry may be the first to achieve quantum advantage because it involves chemical processes. Pharmaceuticals, drug companies, chemical companies, and enterprises involved in process manufacturing have shown the most interest in quantum computing because it is “particularly well-suited for chemistry.”

 

0