(SpectrumIEEE) Over the next several years, physicist Susan Clark and her team at Sandia plan to use a $25 million, 5-year grant they won from the U.S. Department of Energy to run code provided by academic, commercial, and independent researchers around the world on their “QSCOUT” platform as they steadily upgrade it from 3 qubits today to as many as 32 qubits by 2023.
QSCOUT stands for the Quantum Scientific Computing Open User Testbed and consists of ionized ytterbium atoms levitating inside a vacuum chamber. Flashes of ultraviolet laser light spin these atoms about, executing algorithms written in the team’s fledgling quantum assembly code—which they’ve named Just Another Quantum Assembly Language or JAQAL. (They’ve in fact trademarked the name as Jaqal with lowercase letters “aqal,” so all subsequent references will use that handle instead.)
The real advantage of QSCOUT is not performance, however, but the ability it gives users to control as much or as little of the computer’s operation as they want to—even adding new or altered operations to the basic instruction set architecture of the machine.
Clark says that QSCOUT offers some advantages to those keen to explore this frontier of computer science. Superconducting gates, like those in the Google and IBM machines, are certainly fast. But they’re also unstable, losing coherence (and data) in less than a second.