(SciTechDaily) MIT and Dartmouth College researchers have demonstrated, for the first time, a tool that detects new characteristics of environmental “noise” that can destroy the fragile quantum state of qubits, the fundamental components of quantum computers. The advance may provide insights into microscopic noise mechanisms to help engineer new ways of protecting qubits.
Researchers have developed statistics-based models to estimate the impact of unwanted noise sources surrounding qubits to create new ways to protect them, and to gain insights into the noise mechanisms themselves. But, those tools generally capture simplistic “Gaussian noise,” essentially the collection of random disruptions from a large number of sources. In short, it’s like white noise coming from the murmuring of a large crowd, where there’s no specific disruptive pattern that stands out, so the qubit isn’t particularly affected by any one particular source. In this type of model, the probability distribution of the noise would form a standard symmetrical bell curve, regardless of the statistical significance of individual contributors.

0