(Nanowerk.com) The Otto-Hahn group “Quantum Networks” at the Max-Planck-Institute of Quantum Optics in Garching is researching such a “quantum modem”. The team has now achieved a first breakthrough in a relatively simple but highly efficient technology that can be integrated into existing fibre optic networks.
basic research is already working on the quantum internet. Many applications will be more specialised and less sensual than video conferencing, but the importance of absolutely spy-proof long-distance communication is understandable to everyone. “In the future, a quantum internet could be used to connect quantum computers located in different places,” Andreas Reiserer says, “which would considerably increase their computing power!” The physicist heads the independent Otto-Hahn research group “Quantum Networks” at the Max-Planck-Institute of Quantum Optics in Garching.
The “quantum modem” is designed to efficiently establish a connection between flying and stationary qubits. For this purpose, the team around doctoral student Benjamin Merkel has developed a new technology and has just demonstrated its basic functionality. Its crucial advantage is that it could be integrated into the existing telecommunications fibre-optic network. This would be the fastest way to advance a functioning long-distance networking of quantum technologies.
The Garching quantum modem is still purely fundamental research. But it has the potential to advance the technical realisation of a quantum internet.
“We are very happy about this success,” Reiserer says. As a next step, he wants to improve the experiment such that individual erbium atoms can be addressed as qubits via laser light. This is not only an important step towards a usable quantum modem. Erbium atoms as qubits in a crystal may even serve directly as a quantum processor, which is the central part of a quantum computer. This would make the modem easily compatible with such quantum terminals.

0