(TechCrunch) IonQ has announced its road map for the next few years — following a similar move from IBM in September — and TechCrunch writes, “it’s quite ambitious, to say the least”.
IonQ CEO and president Peter Chapman recently suggested that we were only five years away from having desktop quantum computers. That’s not something you’ll likely hear from the company’s competitors — who also often use a very different kind of quantum technology — but IonQ now says that it will be able to sell modular, rack-mounted quantum computers for the data center in 2023 and that by 2025, its systems will be powerful enough to achieve broad quantum advantage across a wide variety of use cases.
Chapman showed TechCrunch a prototype of the hardware the company is working on for 2021, which fits on a workbench. The actual quantum chip is currently the size of a half-dollar and the company is now working on essentially putting the core of its technology on a single chip, with all of the optics that make its system work integrated.
thanks to betting on trapped ion quantum computing as the core technology for its machines, IonQ doesn’t have to contend with the low-temperatures that IBM and others need to run their machines. Some sceptics have argued that IonQ’s technology will be hard to scale, but that’s something Chapman and Monroe easily dismiss, and IonQ’s new road map points at systems with thousands of algorithmic qubits (which are made out of a factor of 10 or 20 more physical qubits for handling error corrections) by 2028.
“As soon as you hit about 40 qubits — algorithmic qubits — in the beginning of 2024, then you’ll start to see quantum advantage probably in machine learning,” Chapman explained. “And then, I think it’s pretty well accepted that at 72 qubits is roughly when you start to do quantum advantage fairly broadly. So that would be in 2025.
IonQ has long argued that scaling its technology doesn’t necessitate any technological breakthroughs. And indeed, the company argues that by packing a lot of its technology on a single chip, its system will become more stable by default.

0