888-384-7144 info@insidequantumtechnology.com

Ultrathin materials may pave the way for personal-sized quantum devices

By IQT News posted 31 Jan 2022

(Phys.org) MIT researchers have now used ultrathin materials to build superconducting qubits that are at least one-hundredth the size of conventional designs and suffer from less interference between neighboring qubits. This advance could improve the performance of quantum computers and enable the development of smaller quantum devices.
The researchers have demonstrated that hexagonal boron nitride, a material consisting of only a few monolayers of atoms, can be stacked to form the insulator in the capacitors on a superconducting qubit. This defect-free material enables capacitors that are much smaller than those typically used in a qubit, which shrinks its footprint without significantly sacrificing performance.
In addition, the researchers show that the structure of these smaller capacitors should greatly reduce cross-talk, which occurs when one qubit unintentionally affects surrounding qubits.
“Right now, we can have maybe 50 or 100 qubits in a device, but for practical use in the future, we will need thousands or millions of qubits in a device. So, it will be very important to miniaturize the size of each individual qubit and at the same time avoid the unwanted cross-talk between these hundreds of thousands of qubits. This is one of the very few materials we found that can be used in this kind of construction,” says co-lead author Joel Wang, a research scientist in the Engineering Quantum Systems group of the MIT Research Laboratory for Electronics.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

0