Inside Quantum Technology

Team from Stanford, Google, Max Planck Institute, & Oxford create time crystal using Google’s Sycamore

(SciTechDaily) In research published on November 30, 2021, in the journal Nature, a team of scientists from Stanford University, Google Quantum AI, the Max Planck Institute for Physics of Complex Systems and Oxford University detail their creation of a time crystal using Google’s Sycamore quantum computing hardware.
The big picture is that we are taking the devices that are meant to be the quantum computers of the future and thinking of them as complex quantum systems in their own right,” said Matteo Ippoliti, a postdoctoral scholar at Stanford and co-lead author of the work. “Instead of computation, we’re putting the computer to work as a new experimental platform to realize and detect new phases of matter.”
For the team, the excitement of their achievement lies not only in creating a new phase of matter but in opening up opportunities to explore new regimes in their field of condensed matter physics, which studies the novel phenomena and properties brought about by the collective interactions of many objects in a system. (Such interactions can be far richer than the properties of the individual objects.)
The researchers were able to confirm their claim of a true time crystal thanks to special capabilities of the quantum computer. Although the finite size and coherence time of the (imperfect) quantum device meant that their experiment was limited in size and duration – so that the time crystal oscillations could only be observed for a few hundred cycles rather than indefinitely – the researchers devised various protocols for assessing the stability of their creation. These included running the simulation forward and backward in time and scaling its size.
“We managed to use the versatility of the quantum computer to help us analyze its own limitations,” said Moessner, co-author of the paper and director at the Max Planck Institute for Physics of Complex Systems. “It essentially told us how to correct for its own errors, so that the fingerprint of ideal time-crystalline behavior could be ascertained from finite time observations.”
Creating a new phase of matter is unquestionably exciting on a fundamental level. In addition, the fact that these researchers were able to do so points to the increasing usefulness of quantum computers for applications other than computing. “I am optimistic that with more and better qubits, our approach can become a main method in studying non-equilibrium dynamics,” said Pedram Roushan, researcher at Google and senior author of the paper.
“We think that the most exciting use for quantum computers right now is as platforms for fundamental quantum physics,” said Ippoliti. “With the unique capabilities of these systems, there’s hope that you might discover some new phenomenon that you hadn’t predicted.”
This research was funded by the Defense Advanced Research Projects Agency (DARPA), a Google Research Award, the Sloan Foundation, the Gordon and Betty Moore Foundation and the Deutsche Forschungsgemeinschaft.

Exit mobile version