888-384-7144 info@insidequantumtechnology.com

Researchers Bring Digital Quantum Simulation Within Reach for Current Day Quantum Devices

By IQT News posted 16 Apr 2019

(ScienceDaily) Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the solution of quantum many-body problems utilizing the concept of digital quantum simulation,” says Markus Heyl from Max Planck Institute for the Physics of Complex in Dresden, Germany. “Such simulations could have a major impact on quantum chemistry, materials science and fundamental physics.”
Within digital quantum simulation the time evolution of the targeted quantum many-body system is realized by a sequence of elementary quantum gates by discretizing time evolution, called Trotterization. Heyl–together with Peter Zoller from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Communication at the Austrian Academy of Sciences and Philipp Hauke from the Kirchhoff Institute for Physics and the Institute for Theoretical Physics at the University of Heidelberg showed in a recent paper in Science Advances quantum localization-by constraining the time evolution through quantum interference-strongly bounds these errors for local observables.
“Digital quantum simulation is thus intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function,” Heyl says. This brings digital quantum simulation for classically challenging quantum many-body problems within reach for current day quantum devices.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

IQT Partner Program

Quantropi
DUSA
McAndrews
HKA
Aliro
RANDAEMON
Zapata
Quantum Xchange
Toshiba
Quintessence Labs
Keysight World
Post Quantum
Qunnect

Become an IQT partner

0