Inside Quantum Technology

Quantum Tech: Semiconductor ‘Flipped’ to Insulator Above Room Temp

(Semi-ConductorDigest) A semiconducting material that performed a quantum “flip” from a conductor to an insulator above room temperature has been developed at the University of Michigan. It potentially brings the world closer to a new generation of quantum devices and ultra-efficient electronics.
Observed in two-dimensional layers of tantalum sulfide only a single atom thick, the exotic electronic structure that supported this quantum flip was previously only stable at ultra-cold temperatures of -100 degrees Fahrenheit. The new material remains stable at up to 170 F.
“We’ve opened up a new playground for the future of electronic and quantum materials,” said Robert Hovden, U-M assistant professor of materials science and engineering and corresponding author of the study in Nature Communications. “It represents a whole new way to access exotic states.”
Hovden explains that exotic quantum properties—like the ability to switch from a conductor to an insulator—could be key to the next generation of computing, providing more ways to store information and faster switching between states. That could lead to far more powerful and more energy-efficient devices.
Today’s electronics use tiny electronic switches to store data; “on” is one and “off” is zero, and the data disappears when the power is turned off. Future devices could use other states, like “conductor” or “insulator” to store digital data, requiring only a quick blip of energy to switch between states rather than a steady stream of electricity.
In the past, however, such exotic behavior has only been observed in materials at super-cold temperatures. The ultimate goal is to develop materials that can quickly “flip” from one state to another on demand and at room temperature. Hovden says this research could be an important step in that direction.

Exit mobile version