888-384-7144 info@insidequantumtechnology.com

Quantum Chip Fabrication Paves Way for Scalable Processors

By IQT News posted 04 Aug 2020

(EurekaAlert) An Army-funded project marks a turning point in the field of scalable quantum processors, producing the largest quantum chip of its type using diamond-based qubits and quantum photonics.
Millions of quantum processors will be needed to build quantum computers, and new research at MIT and Sandia National Laboratories, funded and managed in part by the U.S. Army Combat Capability Development’s Command’s Army Research Laboratory’s Center for Distributed Quantum Information, demonstrates a viable way to scale-up processor production.
“Building large scale quantum devices will entail both the assembly of large numbers of high-quality qubits and the creation of reliable circuits for transmitting and manipulating quantum information between them,” said Dr. Fredrik Fatemi, Army researcher and CDQI co-manager. “Here, the research team has demonstrated exceptional progress toward reliably manufacturing complex quantum chips with both critical elements.”
Unlike classical computers, which process and store information using bits represented by either 0s and 1s, quantum computers operate using quantum bits, or qubits, which can represent 0, 1, or both at the same time. This strange property allows quantum computers to simultaneously perform multiple calculations, solving problems that would be intractable for classical computers.
The qubits in the new chip are artificial atoms made from defects in the diamond, which can be prodded with visible light and microwaves to emit photons that carry quantum information. The process, which the researchers describe in the peer-reviewed journal Nature, is a hybrid approach, in which carefully selected quantum micro-chiplets containing multiple diamond-based qubits are placed on an aluminum nitride photonic integrated circuit.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

0