By IQT News posted 02 Aug 2019

(Phys.org) A research team lead by Osaka University demonstrated how information encoded in the circular polarization of a laser beam can be translated into the spin state of an electron in a quantum dot, each being a quantum bit and a quantum computer candidate. The achievement represents a major step towards a “quantum internet,” in which future computers can rapidly and securely send and receive quantum information.
Quantum information transfer has already been used for cryptographic purposes. “The transfer of superposition states or entangled states allows for completely secure quantum key distribution,” senior author Akira Oiwa says. “This is because any attempt to intercept the signal automatically destroys the superposition, making it impossible to listen in without being detected.”

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

  • Forthcoming Events

    • IQT Fall | November 1-5, 2021
      Online & In-Person New York City
    • IQT, The Hague, The Netherlands | February 21-23, 2022
    • IQT Spring | May 10-12, 2022
      Online & In-Person San Diego
    • IQT Asia-Pacific Singapore 2022 | Dates Forthcoming
    • For additional information: info@3drholdings.com
0