(SciTechDaily) Researchers in the University of Chicago’s Pritzker School of Molecular Engineering and Argonne National Laboratory announced they can directly control the interactions between two types of quantum particles called microwave photons and magnons. The approach may become a new way to build quantum technology, including electronic devices with new capabilities.
Scientists have high hopes for quantum technology, which has advanced by leaps and bounds over the past decade and could become the basis of powerful new types of computers, ultra-sensitive detectors, and even “hack-proof” communication. But challenges remain in scaling up the technology, which depends on manipulating the smallest particles in order to harness the strange properties of quantum physics.
Two such quantum particles are microwave photons—elementary particles that form the electromagnetic waves that we already use for wireless communications—and magnons. Magnons are the term for a particle-like entity that forms what scientists call ​“spin waves” — wave-like disturbances that can occur in magnetic materials, and can be used to move information.
Getting these two types of particles to talk to each other has emerged in recent years as a promising platform for both classical and quantum information processing. But this interaction had proved impossible to manipulate in real time, until now.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

0