Inside Quantum Technology

Novel Thermometer Can Accelerate Quantum Computer Development

(Phys.org) Researchers at Chalmers University of Technology, Gothenburg, Sweden, have developed a novel type of thermometer that can simply and quickly measure temperatures during quantum calculations with extremely high accuracy. The breakthrough provides a benchmarking tool for quantum computing of great value—and opens up for experiments in the exciting field of quantum thermodynamics.
Key components in quantum computers are coaxial cables and waveguides—structures that guide waveforms and act as the vital connection between the quantum processor and the classical electronics that control it. Microwave pulses travel along the waveguides to the quantum processor, and are cooled down to extremely low temperatures along the way. The waveguide also attenuates and filters the pulses, enabling the extremely sensitive quantum computer to work with stable quantum states.
Until now, researchers have only been able to measure this temperature indirectly, with relatively large delay. Now, with the Chalmers researchers’ novel thermometer, very low temperatures can be measured directly at the receiving end of the waveguide, accurately and with extremely high time resolution.

Exit mobile version