Inside Quantum Technology

New qubits bring us one step closer to quantum networks

(EurekaAlert) Scientists are investigating several quantum systems for quantum computing and sensing applications. One system, spin qubits, is based on the control of the orientation of an electron’s spin at the sites of defects in the semiconductor materials that make up qubits. Defects can include small amounts of materials that are different from the main material a semiconductor is made of. Researchers recently demonstrated how to make high quality spin qubits based on chromium defects in silicon carbide. This work was performed, in part, at the Center for Integrated Nanotechnologies, a DOE Office of Science User Facility.
Researchers are exploring chromium defects in silicon carbide as potential spin qubits. One advantage of these spin qubits is that they emit light at wavelengths that are compatible with telecommunications optical fibers. This means they are potentially useful for quantum networks that employ optical fiber to connect qubits. Unfortunately, issues with the quality of materials have limited these spin qubits’ viability. Researchers recently investigated new ways to make chromium defects in silicon carbide. They implanted chromium ions into silicon carbide then heated them to more than 1600 degrees Centigrade. This produced a material with spin defects that have a much higher qubit quality. This result could lead to quantum communications that use today’s semiconductor and fiber optic technologies.
The research reported here showed that chromium ions implanted in commercially available silicon carbide substrates, and then annealed at high temperature, produced single spin defects that can be used for spin qubits. The same method could be used to create vanadium or molybdenum defects as researchers continue the search for the ideal qubit.
Funding
This project was supported by the Department of Energy (DOE) Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Exit mobile version