Inside Quantum Technology

Light from rare-earth molecules with promising properties for quantum computers and networks

(ChemEurope) Researchers of Karlsruhe Institute of Technology (KIT), Strasbourg University, Chimie ParisTech and the French national research center CNRS have now achieved major progress in the development of materials for processing quantum information with light. In Nature, they present a europium (europium belongs to the rare-earth metals) molecule with nuclear spins, by means of which an effective photon-spin interface can be produced.
For practical applications, we have to be able to store, process, and distribute quantum states,” says Professor Mario Ruben, Head of the Molecular Quantum Materials Group of KIT’s Institute for Quantum Materials and Technologies (IQMT) and of the European Center for Quantum Sciences – CESQ of Strasbourg University. “For this, we have now identified a promising novel type of material: A europium molecule containing nuclear spins. Europium belongs to the rare-earth metals.” The team of Professors Mario Ruben and David Hunger from the IQMT and Dr. Philippe Goldner from the École nationale supérieure de Chimie de Paris (Chimie ParisTech – PSL University; Centre national de la recherche scientifique; CNRS) present this innovative material in Nature.
Light is also suited for distributing quantum information over larger distances to connect quantum computers or to securely transmit information. This might be achieved by future integration of the novel europium molecule in photonic structures to enhance transitions. “Our work represents an important step towards quantum communication architectures with rare-earth molecules as a basis for a quantum internet,” Professor David Hunger, IQMT, says.

Exit mobile version