Inside Quantum Technology

Japanese Researchers’ new fabrication method of NV-hosting diamond probes may broaden the applicability of quantum imaging probes

( With the advent of spintronics and miniature magnetic devices, there is a growing need for imaging at nanometer scales to detect quantum properties of matter, such as electron spins, magnetic domain structure in ferromagnets, and magnetic vortices in superconductors.
In this regard, nitrogen-vacancy (NV) centers in diamond (defects in diamond structure formed by nitrogen atoms adjacent to “vacancies” created by missing atoms) have gained significant interest. The NV pair, it turns out, can be combined with AFM to accomplish local magnetic imaging and can operate at room temperature and pressures. However, fabricating these probes involve complex techniques that do not allow for much control over the probe shape and size.
In a new study led by Associate Professor Toshu An from Japan Advanced Institute of Science and Technology (JAIST), and Yuta Kainuma, a Ph.D. student at JAIST, in collaboration with researchers from Kyoto University, Japan, and the National Institute of Advanced Industrial Science and Technology, Japan addressed this issue, fabricating NV-hosting diamond probes using a novel technique combining laser cutting and focused ion beam (FIB) processing that enabled both a high degree of processing freedom and control over probe shape. This paper was made available online on 28 December 2021 and was published in Volume 130 Issue 24 of the Journal of Applied Physics.
The team is optimistic that the new fabrication method will broaden the applicability of quantum imaging probes. “In recent years, the development of new devices have been sought to solve environmental and energy problems and realize a sustainable prosperity of human society. Quantum measurement and sensing technology is expected to completely reform the system that supports the social infrastructure in the future. In this regard, our fabrication technique could help boost efforts in realizing nano-scale quantum imaging,” says Dr. An.

Exit mobile version