888-384-7144 info@insidequantumtechnology.com

Important Milestone in the Creation of a Quantum Computer That Uses Transistors As Qubits

By IQT News posted 14 Jan 2021

(SciTechDaily) In recent years, a pan-European collaboration, in partnership with French microelectronics leader CEA-Leti, has been exploring everyday transistors — that are present in billions in all our mobile phones — for their use as qubits.
The French company Leti makes giant wafers full of devices, and, after measuring, researchers at the Niels Bohr Institute, University of Copenhagen, have found these industrially produced devices to be suitable as a qubit platform capable of moving to the second dimension, a significant step for a working quantum computer.
Assistant Professor at Center for Quantum Devices, NBI, Anasua Chatterjee adds: “The original idea was to make an array of spin qubits, get down to single electrons and become able to control them and move them around. In that sense it is really great that Leti was able to deliver the samples we have used, which in turn made it possible for us to attain this result. A lot of credit goes to the pan-European project consortium, and generous funding from the EU, helping us to slowly move from the level of a single quantum dot with a single electron to having two electrons, and now moving on to the two dimensional arrays. Two dimensional arrays is a really big goal, because that’s beginning to look like something you absolutely need to build a quantum computer. So Leti has been involved with a series of projects over the years, which have all contributed to this result.”
The result realized at the Niels Bohr Institute shows that it is now possible to control single electrons, and perform the experiment in the absence of a magnetic field. So the next step will be to look for spins – spin signatures – in the presence of a magnetic field. This will be essential to implement single and two qubit gates between the single qubits in the array. Theory has shown that a handful of single and two qubit gates, called a complete set of quantum gates, are enough to enable universal quantum computation.

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

0