Inside Quantum Technology

Eden Figueroa’s Quantum Computing Lab at SBU Is Building a Quantum Internet

(Stonybrook.edu) Eden Figueroa is the quantum information technology research leader in the Department of Physics and Astronomy at Stony Brook University who is working to harness quantum mechanics behavior with hopes of turning it into a new and improved internet.
The test bed for his ideas is a quantum network connecting locations in Stony Brook and Brookhaven National Laboratory (BNL), about 17 miles away. Figueroa used existing fiberoptic infrastructure and has deployed entanglement sources and quantum memories in several buildings on the BNL campus, with fibers used to quantum connect the physics and instrumentation buildings with the Scientific Data and Computation Center. A similar local area quantum network was developed on the Stony Brook campus.
With the quantum communication channels in place, Figueroa uses the photonic entanglement sources to simultaneously store and retrieve quantum correlations in four quantum memories on both campuses. In 2020, the team achieved transmission of single-photon level polarization quantum bits (qubits) in a configuration covering a total of approximately 87 miles. This marked the longest successful quantum communication link experiment in the United States.
“In the last two or three years the problem has become bigger,” said Figueroa. “Now we have some ‘toys’; how do we network them? This is what makes us unique. With these test beds we are really testing the devices in this network configurations, and really moving quantum information over longer distances. That is very original. In the US there are only a few test beds, but I think the one that we have is by far the most advanced right now.”
Figueroa isn’t alone in working toward this grand vision. His small but extremely dedicated team shares his passion, doing whatever it takes to further the cause. To illustrate the point, Figueroa shows off a working model network in his lab, with optical tables built with components that had to be made and assembled and precisely placed. “Once you build them all of them, you have to align them to serve a purpose,” he said. “It’s a lot of work”

Exit mobile version